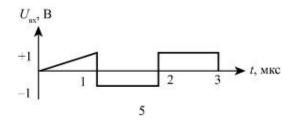
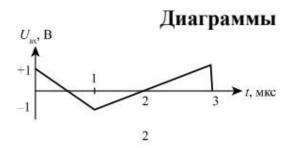
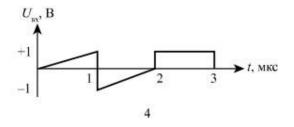

Расчет и построение временных диаграмм сигналов


Рассчитать и построить временные диаграммы сигналов U`, U``, $U_{\text{вых}}$ для устройств, схемы которых показаны на рис.1 и рис.2. Формы сигналов приведены в таблице.


Варианты: 1,4,7,10 – рис.1; варианты: 2,5,8 – рис.2; варианты: 3,6,9 – рис.3



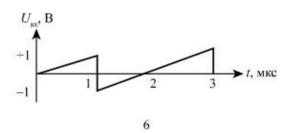
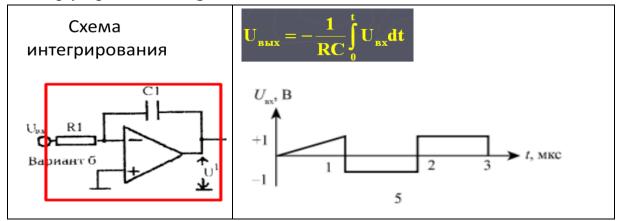


Таблица-Формы сигналов


Номер варианта	Номер диаграммы	<i>R</i> ₁ , кОм	R ₂ , кОм	<i>R</i> ₃ , кОм	<i>R</i> ₄ , кОм	С₁, нФ	С₂, нФ
1	2	3	4	5	6	7	8
1	1	1	2	6	4	4	1
2	3	2	3	6	2	2	2
3	5	4	1	3	1	1	4
4	2	4	2	8	1	1	4
5	4	5	2	4	1	1	5
6	6	6	3	6	1	1	6
7	1	1	1	2	5	5	1
8	2	2	2	2	2	2	2
9	3	3	1	3	2	2	3
10	4	4	2	4	1	1	4
11	5	5	4	8	1	1	5
12	1	6	2	8	1	1	6
13	2	1	1	1	3	3	1
32	5	4	8	4	1	1	4

Пример выполнения задания(вариант32):

1.В соответствии со своим вариантом из таблицы выбираем следующие данные:

 R_1 =4кОм, R_2 =8кОм, R_3 =4кОм, R_4 =1кОм, C_1 =1н Φ , C_2 =4н Φ , Номер временной диаграммы—5.

Номер устройства -1 (рис.1)

2. Описывается в аналитической форме входной сигнал:

$$u_{\text{BX}}(t) = t$$
 при $0 \le t < 1$ [мкс]; $u_{\text{BX}}(t) = -1$ при $1 \le t < 2$ [мкс]; $u_{\text{BX}}(t) = +1$ при $2 \le t < 3$ [мкс].

При прохождении сигнала через интегрирующее устройство сигнал меняется следующим образом:

1. Схема интегрирования

При прохождении сигнала через интегрирующее устройство сигнал меняется следующим образом:

а) при
$$u_{\text{вых}}(t) = t$$

$$u_{\text{вых}}(t) = -\frac{1}{R_1 C_1} \int_0^t u_{\text{вх}}(t) dt = \left(-\frac{1}{4 \cdot 10^3 \cdot 1 \cdot 10^{-9}} \frac{t^2}{2} \right) = -0,125 \cdot 10^6 t^2 \text{ [B]};$$
б) при $u_{\text{вх}}(t) = -1$

$$u_{\text{вых}}(t) = -\frac{1}{R_1 C_1} \int_0^{1 \cdot 10^{-6}} t \, dt + \frac{1}{R_1 C_1} \int_{1 \cdot 10^{-6}}^t dt = -\frac{10^{-12}}{8 \cdot 10^{-6}} + \frac{t}{4 \cdot 10^{-6}} - \frac{1 \cdot 10^{-6}}{4 \cdot 10^{-6}} = \frac{2t - 2 \cdot 10^{-6} - 10^{-12}}{8 \cdot 10^{-6}} \cong \frac{2t - 2 \cdot 10^{-6}}{8 \cdot 10^{-6}} \left(= \frac{t}{4 \cdot 10^{-6}} - \frac{1}{4}; \right)$$
в) при $u_{\text{вх}}(t) = 1$

$$u_{\text{вых}}(t) = -\frac{1}{R_1 C_1} \int_0^{1 \cdot 10^{-6}} t \, dt + \frac{1}{R_1 C_1} \int_{1 \cdot 10^{-6}}^{2 \cdot 10^{-6}} dt - \frac{1}{R_1 C_1} \int_{2 \cdot 10^{-6}}^t dt = \frac{1 \cdot 10^{-12}}{8 \cdot 10^{-6}} + \frac{2 \cdot 10^{-6}}{4 \cdot 10^{-6}} - \frac{t}{4 \cdot 10^{-6}} + \frac{2 \cdot 10^{-6}}{4 \cdot 10^{-6}} = \frac{-10^{-12} + 6 \cdot 10^{-6} - 2t}{8 \cdot 10^{-6}} \cong \frac{6 \cdot 10^{-6} - 2t}{8 \cdot 10^{-6}} = \frac{3 \cdot 10^{-6} - t}{4 \cdot 10^{-6}} = \frac{3}{4} - \frac{t}{10^{-6}}.$$

Таким образом,

$$u_{\text{вых}}'(t) = \begin{cases} -\frac{t^2}{8 \cdot 10^{-6}} & \text{при } 0 < t < 10^{-6} c, \\ \frac{t}{4 \cdot 10^{-6}} - \frac{1}{4} & \text{при } 1 \cdot 10^{-6} \le t < 2 \cdot 10^{-6} c, \\ \frac{3}{4} - \frac{t}{10^{-6}} & \text{при } 2 \cdot 10^{-6} \le t < 3 \cdot 10^{-6} c. \end{cases}$$

a)
$$1/(80x)(t) = \frac{t^2}{8.10^6} = \frac{10^6 \cdot 10^6}{8.10^6} = \frac{1}{8} \cdot 10^6$$

$$t = 10^6$$

$$t = 2.10^6$$

$$t = 2.10^6$$

$$6) 1/(80x)(t) = \frac{3}{4} - \frac{1}{10^{-6}} = \frac{3}{4} - \frac{3}{10^6} = \frac{3}{4} - 3 = 2\frac{1}{4}$$

$$\sqrt{160x}(t) = \frac{3}{4} - \frac{1}{10^{-6}} = \frac{3}{4} - \frac{3}{10^6} = \frac{3}{4} - 3 = 2\frac{1}{4}$$

$$\sqrt{160x}(t) = \frac{3}{4} - \frac{1}{10^{-6}} = \frac{3}{4} - \frac{3}{10^6} = \frac{3}{4} - \frac{3}{10^6} = \frac{3}{4} - \frac{3}{10^6} = \frac{3}{4} + \frac{3}{10^6} = \frac{3$$